Mojave Desert Tests Prepare for NASA Mars Roving

Team members of NASA's Mars Science Laboratory mission took a test rover to Dumont Dunes in California's Mojave Desert this week to improve knowledge of the best way to operate a similar rover, Curiosity, currently flying to Mars for an August landing.

The test rover that they put through paces on various sandy slopes has a full-scale version of Curiosity's mobility system, but it is otherwise stripped down so that it weighs about the same on Earth as Curiosity will weigh in the lesser gravity of Mars.

Information collected in these tests on windward and downwind portions of dunes will be used by the rover team in making decisions about driving Curiosity on dunes near a mountain in the center of Gale Crater.

First, however, the Mars Science Laboratory spacecraft, launched Nov. 26, 2011, must put Curiosity safely onto the ground. Safe landing on Mars is never assured, and this mission will use innovative methods to land the heaviest vehicle in the smallest target area ever attempted on Mars. Advances in landing heavier payloads more precisely are steps toward eventual human missions to Mars.

Curiosity is on track for landing the evening of Aug. 5, 2012, PDT (early on Aug. 6, Universal Time and EDT) to begin a two-year prime mission. Researchers plan to use Curiosity to study layers in Gale Crater's central mound, Mount Sharp. The mission will investigate whether the area has ever offered an environment favorable for microbial life.

NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for the NASA Science Mission Directorate, Washington.

More information about Curiosity is online at http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl/ .  You can follow the mission on Facebook at: http://www.facebook.com/marscuriosity  and on Twitter at: http://www.twitter.com/marscuriosity .

Herschel Sees Intergalactic Bridge Aglow With Stars

The Herschel Space Observatory has discovered a giant, galaxy-packed filament ablaze with billions of new stars. The filament connects two clusters of galaxies that, along with a third cluster, will smash together and give rise to one of the largest galaxy superclusters in the universe.

Herschel is a European Space Agency mission with important NASA contributions.

The filament is the first structure of its kind spied in a critical era of cosmic buildup when colossal collections of galaxies called superclusters began to take shape. The glowing galactic bridge offers astronomers a unique opportunity to explore how galaxies evolve and merge to form superclusters.

"We are excited about this filament, because we think the intense star formation we see in its galaxies is related to the consolidation of the surrounding supercluster," says Kristen Coppin, an astrophysicist at McGill University in Canada, and lead author of a new paper in Astrophysical Journal Letters.

"This luminous bridge of star formation gives us a snapshot of how the evolution of cosmic structure on very large scales affects the evolution of the individual galaxies trapped within it," says Jim Geach, a co-author who is also based at McGill.

The intergalactic filament, containing hundreds of galaxies, spans 8 million light-years and links two of the three clusters that make up a supercluster known as RCS2319. This emerging supercluster is an exceptionally rare, distant object whose light has taken more than seven billion years to reach us.

RCS2319 is the subject of a huge observational study, led by Tracy Webb and her group at McGill. Previous observations in visible and X-ray light had found the cluster cores and hinted at the presence of a filament. It was not until astronomers trained Herschel on the region, however, that the intense star-forming activity in the filament became clear. Dust obscures much of the star-formation activity in the early universe, but telescopes like Herschel can detect the infrared glow of this dust as it is heated by nascent stars.

The amount of infrared light suggests that the galaxies in the filament are cranking out the equivalent of about 1,000 solar masses (the mass of our sun) of new stars per year. For comparison's sake, our Milky Way galaxy is producing about one solar-mass worth of new stars per year.

Researchers chalk up the blistering pace of star formation in the filament to the fact that galaxies within it are being crunched into a relatively small cosmic volume under the force of gravity. "A high rate of interactions and mergers between galaxies could be disturbing the galaxies' gas reservoirs, igniting bursts of star formation," said Geach.

By studying the filament, astronomers will be able to explore the fundamental issue of whether "nature" versus "nurture" matters more in the life progression of a galaxy. "Is the evolution of a galaxy dominated by intrinsic properties such as total mass, or do wider-scale cosmic environments largely determine how galaxies grow and change?" Geach asked. "The role of the environment in influencing galactic evolution is one of the key questions of modern astrophysics."

The galaxies in the RCS2319 filament will eventually migrate toward the center of the emerging supercluster. Over the next seven to eight billion years, astronomers think RCS2319 will come to look like gargantuan superclusters in the local universe, like the nearby Coma cluster. These advanced clusters are chock-full of "red and dead" elliptical galaxies that contain aged, reddish stars instead of young ones.

"The galaxies we are seeing as starbursts in RCS2319 are destined to become dead galaxies in the gravitational grip of one of the most massive structures in the universe," said Geach. "We're catching them at the most important stage of their evolution."

Herschel is a European Space Agency cornerstone mission, with science instruments provided by consortia of European institutes and with important participation by NASA. NASA's Herschel Project Office is based at NASA's Jet Propulsion Laboratory, Pasadena, Calif. JPL contributed mission-enabling technology for two of Herschel's three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, supports the United States astronomical community. Caltech manages JPL for NASA.
More information is online at http://www.herschel.caltech.edu , http://www.nasa.gov/herschel and http://www.esa.int/SPECIALS/Herschel .

NASA's NuSTAR Gearing up for Launch

Final pre-launch preparations are underway for NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR. The mission, which will use X-ray vision to hunt for hidden black holes, is scheduled to launch no earlier than June 13 from Kwajalein Atoll in the Marshall Islands. The observatory will launch from the belly of Orbital Sciences Corporation's L-1011 "Stargazer" aircraft aboard the company's Pegasus rocket.

Technicians at Vandenberg Air Force Base in central California are busy installing the rocket's fairing, or nose cone, around the observatory. A flight computer software evaluation is also nearing completion and should be finished before the Flight Readiness Review, which is scheduled for June 1. A successful launch simulation of the Orbital Sciences' Pegasus XL rocket was conducted last week.

The mission plan is for NuSTAR and its rocket to be attached to the Stargazer plane on June 2. The aircraft will depart California on June 5 and arrive at the Kwajalein launch site on June 6. The launch of NuSTAR from the plane is targeted for 8:30 a.m. PDT (11:30 a.m. EDT) on June 13.

NuSTAR is a Small Explorer mission led by the California Institute of Technology in Pasadena and managed by NASA's Jet Propulsion Laboratory, also in Pasadena, for NASA's Science Mission Directorate in Washington. The spacecraft was built by Orbital Sciences Corporation, Dulles, Va. Its instrument was built by a consortium including Caltech; JPL; the University of California, Berkeley; Columbia University, New York; NASA's Goddard Space Flight Center, Greenbelt, Md.; the Danish Technical University in Denmark; Lawrence Livermore National Laboratory, Livermore, Calif.; and ATK Aerospace Systems, Goleta, Calif. NuSTAR will be operated by UC Berkeley, with the Italian Space Agency providing its equatorial ground station located at Malindi, Kenya. The mission's outreach program is based at Sonoma State University, Rohnert Park, Calif. NASA's Explorer Program is managed by Goddard. JPL is managed by Caltech for NASA.

For more information, visit http://www.nasa.gov/nustar .

Dark Shadows on Mars: Scene from Durable NASA Rover

Like a tourist waiting for just the right lighting to snap a favorite shot during a stay at the Grand Canyon, NASA's Mars Exploration Rover Opportunity has used a low sun angle for a memorable view of a large Martian crater.

The resulting view catches a shadow of the rover in the foreground and the giant basin in the distance. Opportunity is perched on the western rim of Endeavour Crater looking eastward. The crater spans about 14 miles (22 kilometers) in diameter. Opportunity has been studying the edge of Endeavour Crater since arriving there in August 2011.

The scene is presented in false color to emphasize differences in materials such as dark dunes on the crater floor. This gives portions of the image an aqua tint.

Opportunity took most of the component images on March 9, 2012, while the solar-powered rover was spending several weeks at one location to preserve energy during the Martian winter. It has since resumed driving and is currently investigating a patch of windblown Martian dust near its winter haven.

Opportunity and its rover twin, Spirit, completed their three-month prime missions on Mars in April 2004. Both rovers continued for years of bonus, extended missions. Both have made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life. Spirit stopped communicating in 2010. Since landing in the Meridiani region of Mars in January 2004, Opportunity has driven 21.4 miles (34.4 kilometers).

NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, in Pasadena, manages the Mars Exploration Rover Project for NASA's Science Mission Directorate, Washington.

NASA Scientist Figures Way to Weigh Space Rock

A scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif., has accurately determined the mass of a nearby asteroid from millions of miles away. The celestial equivalent of "guess your weight" was achieved by Steve Chesley of JPL's Near-Earth Object Program Office by utilizing data from three NASA assets - the Goldstone Solar System Radar in the California desert, the orbiting Spitzer Space telescope, and the NASA-sponsored Arecibo Observatory in Puerto Rico.

Chesley presented his findings this past Saturday, May 19, at the Asteroids, Comets and Meteors 2012 meeting in Niigata, Japan.

For Chesley to define the asteroid's mass, he first needed to understand its orbit and everything that could affect that orbit -- including neighboring celestial bodies and any propulsive force (however minute) the asteroid could generate.

Incorporating extraordinarily precise observations collected by astronomer Michael Nolan at Arecibo Observatory in September 2011, Arecibo and Goldstone radar observations made in 1999 and 2005, and the gravitational effects of the sun, moon, planets and other asteroids, Chesley was able to calculate how far the asteroid deviated from its anticipated orbit. He found that 1999 RQ36 had deviated from the mathematical model by about 100 miles (160 kilometers)in the past 12 years.  The only logical explanation for this orbital change was that the space rock itself was generating a minute propulsive force known in space rock circles as the Yarkovsky effect.

The Yarkovsky effect is named for the 19th-century Russian engineer who first proposed the idea that a small, rocky space object would, over long periods of time, be noticeably nudged in its orbit by the slight push created when it absorbs sunlight and then re-emits that energy as heat. The effect is hard to measure because it's so infinitesimally small.

"At its peak, when the asteroid is nearest the sun, the Yarkovsky force on 1999 RQ36 is only about a half ounce -- around the weight of three grapes," said Chesley.  "When you're talking about the force of three grapes pushing something with a mass of millions of tons, it takes a lot of high-precision measurements over a long time to see any orbital changes. Fortunately, the Arecibo Observatory provided a dozen years of great radar data, and we were able to see it."

The final piece to the puzzle was provided by Josh Emery of the University of Tennessee, Knoxville, who used NASA's Spitzer Space Telescope in 2007 to study the space rock's thermal characteristics. Emery's measurements of the infrared emissions from 1999 RQ36 allowed him to derive the object's temperatures. From there he was able to determine the degree to which the asteroid is covered by an insulating blanket of fine material, which is a key factor for the Yarkovsky effect.

With the asteroid's orbit, size, thermal properties and propulsive force (Yarkovsky effect) understood, Chesley was able to perform the space rock scientist equivalent of solving for "X" and calculate its bulk density.

"While 1999 RQ36 weighs in at about 60 million metric tons, it is about a half kilometer across," said Chesley. "That means it has about the same density as water, so it's more than likely a very porous jumble of rocks and dust."
Asteroid 1999 RQ36 is of particular interest to NASA as it is the target of the agency's OSIRIS-REx  (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) mission. Scheduled for launch in 2016, ORIRIS-Rex will visit 1999 RQ36, collect samples from the asteroid and return them to Earth.

NASA detects, tracks and characterizes asteroids and comets passing relatively close to Earth using both ground- and space-based telescopes. The Near-Earth Object Observations Program, commonly called "Spaceguard," discovers these objects, characterizes a subset of them, and establishes their orbits to determine if any could be potentially hazardous to our planet. JPL manages the Near-Earth Object Program Office for NASA's Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology in Pasadena. JPL also manages the Spitzer Space Telescope and Goldstone Solar System Radar.

More information about asteroids and near-Earth objects is at:
http://www.jpl.nasa.gov/asteroidwatch .

NASA Lunar Spacecraft Complete Prime Mission Ahead of Schedule

A NASA mission to study the moon from crust to core has completed its prime mission earlier than expected. The team of NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, with twin probes named Ebb and Flow, is now preparing for extended science operations starting Aug. 30 and continuing through Dec. 3, 2012.

The GRAIL mission has gathered unprecedented detail about the internal structure and evolution of the moon. This information will increase our knowledge of how Earth and its rocky neighbors in the inner solar system developed into the diverse worlds we see today.

Since March 8, the spacecraft have operated around the clock for 89 days. From an orbit that passes over the lunar poles, they have collected data covering the entire surface three times. An instrument called the Lunar Gravity Ranging System onboard each spacecraft transmits radio signals that allow scientists to translate the data into a high-resolution map of the moon's gravitational field. The spacecraft returned their last data set of the prime mission today. The instruments were turned off at 10 a.m. PDT (1 p.m. EDT) when the spacecraft were 37 miles (60 kilometers) above the Sea of Nectar.

"Many of the measurement objectives were achieved from analysis of only half the primary mission data, which speaks volumes about the skill and dedication of our science and engineering teams," said Maria Zuber, principal investigator of GRAIL at the Massachusetts Institute of Technology in Cambridge. "While there is a great deal of work yet to be done to achieve the mission's science, it's energizing to realize that what we traveled from Earth to the moon for is right here in our hands."

"GRAIL delivered to Earth over 99.99 percent of the data that could have been collected, which underscores the flawless performance of the spacecraft, instrument and the Deep Space Network," said Zuber.

Both spacecraft instruments will be powered off until Aug. 30. The spacecraft will have to endure a lunar eclipse on June 4. The eclipse and the associated sudden changes in temperature and the energy-sapping darkness that accompanies the phenomena were expected and do not concern engineers about the spacecraft's health.

"Before launch, we planned for all of GRAIL's primary mission science to occur between lunar eclipses," said David Lehman, project manager of GRAIL from NASA's Jet Propulsion Laboratory in Pasadena, Calif. "But now that we have flown Ebb and Flow for a while, we understand them and are confident they can survive these eclipses in good shape."

The extended mission goal is to take an even closer look at the moon's gravity field. To achieve this, GRAIL mission planners will halve their current operating altitude to the lowest altitude that can be safely maintained.

"Orbiting at an average altitude of 14 miles (23 kilometers) during the extended mission, the GRAIL twins will be clearing some of the moon's higher surface features by about 5 miles (8 kilometers)," said Joe Beerer of JPL, GRAIL's mission manager. "If Ebb and Flow had feet, I think by reflex they'd want to pull them up every time they fly over a mountain."

Along with mission science, GRAIL's MoonKAM (Moon Knowledge Acquired by Middle school students) education and public outreach program is also extended. To date over 70,000 student images of the moon have been obtained. The MoonKAM program is led by Sally Ride, America's first woman in space, and her team at Sally Ride Science in collaboration with undergraduate students at the University of California in San Diego.

The GRAIL mission is managed by JPL for NASA's Science Mission Directorate in Washington. The mission is part of the Discovery Program managed at NASA's Marshall Space Flight Center in Huntsville, Ala. NASA's Deep Space Network is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. The network also supports selected Earth-orbiting missions. Lockheed Martin Space Systems in Denver built the spacecraft. JPL is a division of the California Institute of Technology in Pasadena.

For more information about GRAIL, visit: http://www.nasa.gov/grail .

NASA Preparing to Launch its Newest X-Ray Eyes

NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, is being prepared for the final journey to its launch pad on Kwajalein Atoll in the central Pacific Ocean. The mission will study everything from massive black holes to our own sun. It is scheduled to launch no earlier than June 13.

"We will see the hottest, densest and most energetic objects with a fundamentally new, high-energy X-ray telescope that can obtain much deeper and crisper images than before," said Fiona Harrison, the NuSTAR principal investigator at the California Institute of Technology in Pasadena, Calif., who first conceived of the mission 20 years ago.

The observatory is perched atop an Orbital Sciences Corporation Pegasus XL rocket. If the mission passes its Flight Readiness Review on June 1, the rocket will be strapped to the bottom of an aircraft, the L-1011 Stargazer, also operated by Orbital, on June 2. The Stargazer is scheduled to fly from Vandenberg Air Force Base in central California to Kwajalein on June 5 to 6.

After taking off on launch day, the Stargazer will drop the rocket around 8:30 a.m. PDT (11:30 a.m. EDT). The rocket will then ignite and carry NuSTAR to a low orbit around Earth.

"NuSTAR uses several innovations for its unprecedented imaging capability and was made possible by many partners," said Yunjin Kim, the project manager for the mission at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "We're all really excited to see the fruition of our work begin its mission in space."

NuSTAR will be the first space telescope to create focused images of cosmic X-rays with the highest energies. These are the same types of X-rays that doctors use to see your bones and airports use to scan your bags. The telescope will have more than 10 times the resolution and more than 100 times the sensitivity of its predecessors while operating in a similar energy range.

The mission will work with other telescopes in space now, including NASA's Chandra X-ray Observatory, which observes lower-energy X-rays. Together, they will provide a more complete picture of the most energetic and exotic objects in space, such as black holes, dead stars and jets traveling near the speed of light.

"NuSTAR truly demonstrates the value that NASA's research and development programs provide in advancing the nation's science agenda," said Paul Hertz, NASA's Astrophysics Division director. "Taking just over four years from receiving the project go-ahead to launch, this low-cost Explorer mission will use new mirror and detector technology that was developed in NASA's basic research program and tested in NASA's scientific ballooning program. The result of these modest investments is a small space telescope that will provide world-class science in an important but relatively unexplored band of the electromagnetic spectrum."

NuSTAR will study black holes that are big and small, far and near, answering questions about the formation and physics behind these wonders of the cosmos. The observatory will also investigate how exploding stars forge the elements that make up planets and people, and it will even study our own sun's atmosphere.

The observatory is able to focus the high-energy X-ray light into sharp images because of a complex, innovative telescope design. High-energy light is difficult to focus because it only reflects off mirrors when hitting at nearly parallel angles. NuSTAR solves this problem with nested shells of mirrors. It has the most nested shells ever used in a space telescope: 133 in each of two optic units. The mirrors were molded from ultra-thin glass similar to that found in laptop screens and glazed with even thinner layers of reflective coating.

The telescope also consists of state-of-the-art detectors and a lengthy 33-foot (10-meter) mast, which connects the detectors to the nested mirrors, providing the long distance required to focus the X-rays. This mast is folded up into a canister small enough to fit atop the Pegasus launch vehicle. It will unfurl about seven days after launch. About 23 days later, science operations will begin.

NuSTAR is a Small Explorer mission led by Caltech and managed by JPL for NASA's Science Mission Directorate in Washington. The spacecraft was built by Orbital Sciences Corporation in Dulles, Va. Its instrument was built by a consortium including Caltech; JPL; University of California at Berkeley (UC Berkeley); Columbia University in New York; NASA's Goddard Space Flight Center in Greenbelt, Md.; the Danish Technical University in Denmark; Lawrence Livermore National Laboratory in Livermore, Calif.; and ATK Aerospace Systems in Goleta, Calif. NuSTAR will be operated by UC Berkeley, with the Italian Space Agency providing its equatorial ground station located at Malindi, Kenya. The mission's outreach program is based at Sonoma State University in Rohnert Park, Calif. NASA's Explorer Program is managed by Goddard. JPL is managed by Caltech for NASA.

For more information, visit http://www.nasa.gov/nustar and http://www.nustar.caltech.edu .

Enceladus Plume is a New Kind of Plasma Laboratory

Recent findings from NASA's Cassini mission reveal that Saturn's geyser moon Enceladus provides a special laboratory for watching unusual behavior of plasma, or hot ionized gas. In these recent findings, some Cassini scientists think they have observed "dusty plasma," a condition theorized but not previously observed on site, near Enceladus.

Data from Cassini's fields and particles instruments also show that the usual "heavy" and "light" species of charged particles in normal plasma are actually reversed near the plume spraying from the moon's south polar region. The findings are discussed in two recent papers in the Journal of Geophysical Research.

"These are truly exciting discoveries for plasma science," said Tamas Gombosi, Cassini fields and particles interdisciplinary scientist based at the University of Michigan, Ann Arbor.  "Cassini is providing us with a new plasma physics laboratory."

Ninety-nine percent of the matter in the universe is thought to be in the form of plasma, so scientists have been using Saturn as a site other than Earth to observe the behavior of this cloud of ions and electrons directly. Scientists want to study the way the sun sends energy into Saturn's plasma environment, since that jolt of energy drives processes such as weather and the behavior of magnetic field lines. They can use these data to understand how Saturn's plasma environment is similar to and different from that of Earth and other planets.

The small, icy moon Enceladus is a major source of ionized material filling the huge magnetic bubble around Saturn. About 200 pounds (about 100 kilograms) of water vapor per second - about as much as an active comet - spray out from long cracks in the south polar region known as "tiger stripes." The ejected matter forms the Enceladus plume - a complex structure of icy grains and neutral gas that is mainly water vapor. The plume gets converted into charged particles interacting with the plasma that fills Saturn's magnetosphere.

The nature of this unique gas-dust-plasma mixture has been revealed over the course of the mission with data from multiple instruments, including the Cassini plasma spectrometer, magnetometer, magnetospheric imaging instrument, and the radio and plasma wave science instrument. What scientists found most interesting is that the grains range continuously in size from small water clusters (a few water molecules) to thousandths of an inch (100 micrometers). They also saw that a large fraction of these grains trap electrons on their surface. Up to 90 percent of the electrons from the plume appear to be stuck on large, heavy grains.

In this environment, Cassini has now seen positively charged ions become the small, "light" plasma species and the negatively charged grains become the "heavy" component. This is just the opposite of "normal" plasmas, where the negative electrons are thousands of times lighter than the positive ions.

In a paper published in the December issue of the journal, a team of Swedish and U.S. scientists on the Cassini mission examined radio and plasma wave science instrument observations from four flybys of Enceladus during 2008. They found a high plasma density (both ions and electrons) within the Enceladus plume region, although the electron densities are usually much lower than the ion densities in the plumes and in the E ring. The team concluded that dust particles a hundred millionth to a hundred thousandth of an inch (a nanometer to micrometer) in size are sweeping up the negatively charged electrons.  The mass of the observed "nanograins" ranges from a few hundred to a few tens of thousands of atomic mass units (proton masses), and must therefore contain tens to thousands of water molecules bound together. At least half of the negatively charged electrons are attached to the dust, and their interaction with the positively charged particles causes the ions to be decelerated. Because the dust is charged and behaves as part of the plasma cloud, this paper distinguishes this state of matter from dust that just happens to be in plasma.

"Such strong coupling indicates the possible presence of so-called 'dusty plasma', rather than the 'dust in a plasma' conditions which are common in interplanetary space," said Michiko Morooka from the Swedish Institute of Space Physics, lead author of the paper and a Cassini radio and plasma wave science co-investigator. "Except for measurements in Earth's upper atmosphere, there have previously been no in-situ observations of dusty plasma in space."

In a dusty plasma, conditions are just right for the dust to also participate in the plasma's collective behavior. This increases the complexity of the plasma, changes its properties and produces totally new collective behavior. Dusty plasma are thought to exist in comet tails and dust rings around the sun, but scientists rarely have the opportunity to fly through the dusty plasma and directly measure its characteristics in place.

A separate analysis, based on data obtained by the Cassini plasma spectrometer, revealed the presence of nanograins having an electric charge corresponding to a single excess electron.  "The Cassini plasma spectrometer has enabled us to discover and analyze new classes of charged particles that were wholly unanticipated when the instrument was designed and built in the 1980s and 90s," said Tom Hill, the study's lead author and a co-investigator based at Rice University in Houston.

The nature of the Enceladus plume has been revealed over time due to the synergistic nature of the fields and particles instruments on Cassini, which has been in residence in Saturn's magnetosphere since 2004. Following the original detection of the plume based on magnetometer measurements, Sven Simon from the University of Cologne, Germany, and Hendrik Kriegel from the University of Braunschweig, Germany, found that the observed perturbation of Saturn's magnetic field required the presence of negatively charged dust grains in the plume. These findings were reported in the April and October 2011 issues of Journal of Geophysical Research Space Physics.  Previous data obtained by the ion and neutral mass spectrometer revealed the complex composition of the plume gas, and the cosmic dust analyzer revealed that the plume grains were rich in sodium salts. Because this scenario can only arise if the plume originated from liquid water, it provides compelling evidence for a subsurface ocean.

Cassini will continue to study the complex nature of the plume region in the three planned additional flybys of Enceladus.  The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. More Cassini information is at http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov .

Venus, a Planetary Portrait of Inner Beauty

A Venus transit across the face of the sun is a relatively rare event -- occurring in pairs with more than a century separating each pair. There have been all of 53 transits of Venus across the sun between 2000 B.C. and the last one in 2004. On Wednesday, June 6 (Tuesday, June 5 from the Western Hemisphere), Earth gets another shot at it - and the last for a good long while.  But beyond this uniquely celestial oddity, why has Venus been an object worthy of ogling for hundreds of centuries?

"Venus is a fascinating yet horrendously extreme place all at once," said Sue Smrekar, a scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif.  "Although the surface is hot enough to melt lead due to its runaway greenhouse atmosphere, in many respects it is Earth's twin [size, gravity and bulk composition]."

Venus is not only nearby, but its orbit brings it closest to Earth of all the planets. Which along with its bright atmosphere goes a long way toward making it the third brightest object in the sky (the sun and moon are one and two). Along with Smrekar and many other equally intrigued planetary scientists, you can add to the list of those studying the second planet from the sun the ancient Babylonians, who noted its wanderings in texts as far back as 1600 BC. And anyone who has ever sweated out a Pythagorean Theorem in school (A2+B2=C2) might find some solace in knowing that Greek mathematician Pythagoras sweated out the orbits of Venus, eventually becoming the first to determine that what had been believed to be unique and separate evening and morning stars (as believed by the ancient Egyptians and Greeks), was actually just one object - Venus.

But for all that these ancient astronomers and their medieval contemporaries (including the Aztecs back in the 1500s) were able to deduce, no human had ever laid eyes on Venus as more than a bright dot in the sky until Galileo Galilei, who in 1610 was the first human to actually see Venus in various kinds of light. With his telescope, Galileo started cranking out Venetian discoveries, including how the planet changed its illumination phase just like the moon as it circles Earth. Galileo's telescope provided strong evidence that Venus goes around the sun, and not Earth, as most of his contemporaries believed.

After Galileo, Venus came under even more intense scrutiny, both scientific and fanciful. More than one astronomer (and science fiction author) theorized it was home to some type of life form.  The thick, impenetrable clouds allowed them to imagine tropical environs with steady rainfall and lush vegetation.

With the dawn of robotic space probes, America's Mariner 2, built by JPL, became history's first interplanetary traveler when it flew past Venus on Dec. 14, 1962. All told, 45 missions targeting Earth's twin have been launched by the United States, Russia (and former Soviet Union), and Japan.  All this probing by astronomers and robotic explorers has found Venus to be replete with 900-degree-Fahrenheit (500-degree-Celsius) temperatures in a carbon-dioxide-rich atmosphere with pressures equivalent to being half a mile below the ocean surface. It is not a particularly hospitable environment.

"If our research tells us anything, it is that while Venus is devoid of life, it should be anything but avoided," said Smrekar. "Throughout history, Venus has been one of the most studied and speculated-about celestial bodies in our sky, and the same truth will hold well after this transit is over. Venus is a remarkable world with many lessons for us about the climate and interior of Earth and Earth-like planets in other solar systems."

For those who want to know more, check out NASA's web page for all things Venus transit: http://venustransit.nasa.gov/transitofvenus/ .

If you're in the western Pacific, eastern Asia and eastern Australia, you'll get a great view of the entire event. North and Central America, and northern South America get the beginning of the transit (on June 5), but the sun will set before the event ends. Conversely, Europeans, as well as those watching in western and central Asia, eastern Africa and western Australia will get a glimpse at the tail end.

For information about NASA and agency programs, visit http://www.nasa.gov .

NASA Invites Social Media Fans to Mars Landing Event

NASA will host a 3-day NASA Social for 25 of its social media followers Aug. 3-5 at the agency's Jet Propulsion Laboratory in Pasadena, Calif. The NASA Social is scheduled to culminate in the landing of the Mars Science Laboratory's Curiosity rover at Mars' Gale crater. The landing is anticipated at approximately 10:31 p.m. PDT Aug. 5 (1:31 a.m. EDT Aug. 6).

The event will offer people who engage with NASA through Twitter, Facebook, Google+ and other social networks the opportunity to tour JPL, speak with scientists and engineers, participate in news conferences and, if all goes as planned, be at the media site when the first signal of the rover's landing is detected by JPL mission control. The event also will provide participants the opportunity to interact with fellow tweeps, space enthusiasts and members of NASA's social media team.

During the two-year prime mission, Curiosity will investigate whether the selected area of Mars offered environmental conditions favorable for microbial life or if evidence of it existed.

JPL has 23 spacecraft and 10 instruments conducting active missions of exploration of Earth, the solar system and the universe beyond. These ventures, including Voyager, Cassini and the Opportunity Mars rover, are enabled by NASA's Deep Space Network (DSN). Managed by JPL, the DSN is an international network of antenna complexes for communications between spacecraft and Earth-based teams that guide them. NASA Social guests will meet team members from some of these missions and tour DSN mission control.

NASA Social registration opens at 9 a.m. PDT (noon EDT) Wednesday, June 6, and closes at 9 a.m. PDT (noon EDT Friday, June 8). NASA will randomly select 25 participants from online registrations.

For more information and rules pertaining to NASA Social registration, visit:
http://www.nasa.gov/social

It's the final opportunity of the century to witness the rare astronomical reunion of the sun, Venus and Earth. On Tuesday, June 5 or 6, 2012, depending on your location, Venus will make its presence in the solar system visible from Earth's day side. Using special eye safety precautions, viewers may see Venus as a small dot slowly drifting across the golden disk of the sun.

Transits of Venus are very rare, separated by more than a hundred years. There have been 53 transits since 2000 B.C., but only six have been witnessed since the invention of the telescope in 1608. These rare events occur in pairs, with the first transit occurring June 8, 2004. The next opportunity won't be until Dec. 10 and 11, 2117.

Jeremiah Horrocks and William Crabtree, two young astronomers from England, recorded the first observation of a transit in 1639. In 1769, survey crews, including Captain James Cook, gathered transit data from various locations around the world that were later used to calculate the distance between Earth and the sun, thereby establishing the solar system's scale.

"Throughout history, astronomers have creatively used nature's coincidences as opportunities to learn something new about the universe," said Natalie Batalha, Kepler mission scientist at NASA Ames Research Center, Moffett Field, Calif. "Today is no different. As Venus crosses the disk of the sun, her shadow sweeps across the face of Earth in the same way that the shadows cast by distant exoplanets sweep across the face of the Kepler photometer."

Today, transit events are used to detect planets beyond the solar system. NASA's Kepler space telescope continuously measures changes in brightness of more than 150,000 stars to detect when a planet passes or transits in front of a star. Kepler does not directly image distant planets, as they are too far away.

Different-size planets block different amounts of starlight. Kepler's exquisitely precise photometer, or light sensor, is designed to detect fractional changes in brightness. For an Earth-size planet transiting a sun-like star, the change in brightness is only 84 parts per million. That is less than 1/100th of one percent, or the equivalent of the amount of light blocked if a gnat crawled across a car's headlight viewed from several miles away.

Transit data are rich with information. By measuring the depth of the dip in brightness and knowing the size of the star, scientists can determine the size or radius of the planet. The orbital period of the planet can be determined by measuring the elapsed time between transits. Once the orbital period is known, Kepler's Third Law of Planetary Motion can be applied to determine the average distance of the planet from its stars.

Using the transit method, the Kepler mission has identified 61 planets and more than 2,300 planet candidates during the spacecraft's first 16 months of observation from May 2009 to September 2010.

NASA's Ames Research Center in Moffett Field, Calif., manages Kepler's ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., managed the Kepler mission's development. For information about the Kepler Mission, visit: http://www.nasa.gov/mission_pages/kepler/main/index.html .

For more information about the worldwide events, safety precautions for viewing, educational content and social media activities, visit: http://venustransit.nasa.gov/transitofvenus/ .







Dawn Mission Video Shows Vesta's Coat of Many Colors

The colors were chosen to highlight differences in surface composition that are too subtle for the human eye to see. Scientists are still analyzing what some of the colors mean for the composition of the surface. But it is clear that the orange material thrown out from some impact craters is different from the surrounding surface material. Green shows the relative abundance of iron. Parts of the huge impact basin known as Rheasilvia in Vesta's southern hemisphere, for instance, have areas with less iron than nearby areas.

Dawn has imaged the majority of the surface of Vesta with the framing camera to provide this 3-D map. While some areas in the north were in shadow at the time the images were obtained by the camera, Dawn expects to improve its coverage of Vesta's northern hemisphere with additional observations. Dawn's viewing geometry also prevented mapping of a portion of the mountain of the south pole.

The spacecraft is currently spiraling up from its lowest-altitude orbit into its final science orbit, where its average altitude will be about 420 miles (680 kilometers). Dawn is scheduled to leave Vesta around Aug. 26.

The Dawn mission is managed by NASA's Jet Propulsion Laboratory in Pasadena, Calif., for the agency's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Ala. UCLA is responsible for overall Dawn mission science. Orbital Sciences Corp. of Dulles, Va., designed and built the Dawn spacecraft. The framing cameras were developed and built under the leadership of the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany. The German Aerospace Center (DLR) Institute of Planetary Research in Berlin made significant contributions in coordination with the Institute of Computer and Communication Network Engineering in Braunschweig. The framing camera project is funded by the Max Planck Society, DLR and NASA. JPL is a division of the California Institute of Technology in Pasadena.

For more information about Dawn, visit: http://www.nasa.gov/dawn and http://dawn.jpl.nasa.gov .

NASA Tests Future Mars Landing Technology

Traveling 300 million miles through deep space to reach the planet Mars is difficult; successfully landing there is even harder. The process of entering the Red Planet's atmosphere and slowing down to land has been described as "seven minutes of terror."

During the first four minutes of entry, friction with the Martian atmosphere slows a spacecraft considerably. But at the end of this phase, the vehicle is still traveling at over 1,000 mph (1,609 kilometers per hour) with only 100 seconds left before landing. Things need to happen in a hurry. A parachute opens to slow the spacecraft down to "only" 200 mph (about 322 kilometers per hour), but now there are only seconds left and the spacecraft is approximately 300 feet from the ground. From there, the spacecraft may use rockets to provide a gentle landing on the surface, airbags to cushion the impact of a free fall or a combination of rockets and tethers to lower a rover to the surface.

Landing payloads that are large enough to bring humans and sustain their survival on the Red Planet is still beyond our capability. The same parachute design developed for the Viking missions in the 1970s has been used for all U.S. missions to the surface of Mars, including the Curiosity rover that will land in August of this year. To conduct advanced exploration missions in the future, however, NASA must advance deceleration technology to a new level of sophistication.

"We have now outgrown that capability and need to develop a larger parachute that will enable a larger payload," said Mark Adler, project manager for a new technology demonstration task at NASA's Jet Propulsion Laboratory in Pasadena, Calif.

Enter the Low-Density Supersonic Decelerator Project, an ambitious technology development and demonstration effort the likes of which has not been attempted since before the Viking missions to Mars in the 1970's. The project will test inflatable decelerators and advanced parachutes in a series of rocket sled, wind tunnel, and rocket-powered flight tests.

The Low-Density Supersonic Decelerator Project is managed by JPL for NASA's Office of the Chief Technologist in Washington. The mission is one of nine missions reporting to the Technology Demonstration Missions Program managed at the NASA Marshall Space Flight Center in Huntsville, Ala.

For the full story, please visit: http://www.nasa.gov/mission_pages/tdm/ldsd/rocketsled2.html

NASA continues to develop space technologies such as these to enable future deep space missions with exciting new capabilities for humans to explore and discover.

For more information on new space technology and innovations, visit the Office of Chief Technologist website:
http://www.nasa.gov/offices/oct/home/index.html

Orbiter Puts Itself into Standby Safe Mode

PASADENA, Calif. -- NASA's Mars Odyssey orbiter put itself into a precautionary standby status early Friday, June 8, Universal Time (Thursday evening, Pacific Time), when the spacecraft detected unexpected characteristics in movement of one of its reaction wheels. The spacecraft uses three of these wheels as the primary method for adjusting and maintaining its orientation.  It carries a spare reaction wheel.

Odyssey's flight team is in communication with the spacecraft while planning actions in response to Odyssey entering the standby status, which is called safe mode.

"The spacecraft is safe, and information we've received from it indicates the problem is limited to a single reaction wheel," said Odyssey Mission Manager Chris Potts of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "The path forward is evaluating the health of the reaction wheel and our options for proceeding."

Because the trigger for the incident was limited to a reaction wheel, the spacecraft did not need to completely reboot its computer, as it had in some earlier safing incidents during its record-setting decade of service at Mars. The flight team will be developing a recovery timeline in coming days.

NASA launched the Mars Odyssey spacecraft on April 7, 2001. Odyssey arrived at Mars Oct. 24, 2001. After arrival, the spacecraft spent several months using a technique called aerobraking, which involved dipping into the Martian atmosphere to adjust its orbit. In February 2002, science operations began. Odyssey has worked at Mars longer than any other mission in history.  Besides conducting its own scientific observations, it serves as a communication relay for robots on the surface of Mars. NASA plans to use Odyssey and the newer Mars Reconnaissance Orbiter as communication relays for the Mars Science Laboratory mission during the landing and Mars-surface operations of that mission's Curiosity rover.

Odyssey is managed by NASA's Jet Propulsion Laboratory, Pasadena, for NASA's Science Mission Directorate in Washington. Lockheed Martin Space Systems in Denver built the spacecraft. JPL and Lockheed Martin collaborate on operating the spacecraft. For more about the Mars Odyssey mission, visit: http://mars.jpl.nasa.gov/odyssey . 

Mapping Volcanic Heat on Io

A new study finds that the pattern of heat coming from volcanoes on Io's surface disposes of the generally-accepted model of internal heating.  The heat pouring out of Io's hundreds of erupting volcanoes indicates a complex, multi-layer source.  These results come from data collected by NASA spacecraft and ground-based telescopes and appear in the June issue of the journal Icarus.

A map of hot spots, classified by the amount of heat being emitted, shows the global distribution and wide range of volcanic activity on Io.  Most of Io's eruptions dwarf their contemporaries on Earth.

"This is the most comprehensive study of Io's volcanic thermal emission to date," said Glenn Veeder of the Bear Fight Institute, Winthrop, Wash., who led the work of a multi-faceted team that included Ashley Davies, Torrence Johnson and Dennis Matson of NASA's Jet Propulsion Laboratory, Pasadena, Calif., Jani Radebaugh of Brigham Young University, in Provo, Utah, and David Williams of Arizona State University, Tempe, Ariz.  The team examined data primarily from the NASA's Voyager and Galileo missions, but also incorporated infrared data obtained from telescopes on Earth.

"The fascinating thing about the distribution of the heat flow is that it is not in keeping with the current preferred model of tidal heating of Io at relatively shallow depths," said Davies.  "Instead, the main thermal emission occurs about 40 degrees eastward of its expected positions."

"The pattern that emerges points to a complex heating process within Io," said Matson.  "What we see indicates a mixture of both deep and shallow heating."

A mystery has also emerged.  The team found that active volcanoes accounted for only about 60 percent of Io's heat.  This component mostly emanates from flat-floored volcanic craters called paterae, a common feature on Io.  But where is the "missing" 40 percent?  "We are investigating the possibility that there are many smaller volcanoes that are hard, but not impossible, to detect," said Veeder. "We are now puzzling over the observed pattern of heat flow."

Understanding this will help identify the tidal heating mechanisms not only within Io, but also may apply to neighboring Europa, a high-priority target for NASA in its search for life beyond Earth.

The Galileo mission was managed by NASA's Jet Propulsion Laboratory in Pasadena, Calif., for the agency's Science Mission Directorate. The mission was launched by the space shuttle Atlantis in 1989 to Jupiter, produced numerous discoveries and provided scientists decades worth of data to analyze. Galileo was the first spacecraft to directly measure Jupiter's atmosphere with a probe and conduct long-term observations of the Jovian system. NASA extended the mission three times to take advantage of Galileo's unique science capabilities, and the spacecraft was put on a collision course into Jupiter's atmosphere in September 2003 to eliminate any chance of impacting Europa.

JPL is a division of the California Institute of Technology in Pasadena.

/www.jpl.nasa.g

NASA Mars Rover Team Aims for Landing Closer to Prime Science Site


PASADENA, Calif. -- NASA has narrowed the target for its most advanced Mars rover, Curiosity, which will land on the Red Planet in August. The car-sized rover will arrive closer to its ultimate destination for science operations, but also closer to the foot of a mountain slope that poses a landing hazard.

"We're trimming the distance we'll have to drive after landing by almost half," said Pete Theisinger, Mars Science Laboratory project manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "That could get us to the mountain months earlier."

It was possible to adjust landing plans because of increased confidence in precision landing technology aboard the Mars Science Laboratory spacecraft, which is carrying the Curiosity rover. That spacecraft can aim closer without hitting Mount Sharp at the center of Gale crater. Rock layers located in the mountain are the prime location for research with the rover.

Curiosity is scheduled to land at approximately 10:31 p.m. PDT Aug. 5 (1:31 a.m. EDT, Aug. 6). Following checkout operations, Curiosity will begin a two-year study of whether the landing vicinity ever offered an environment favorable for microbial life.

Theisinger and other mission leaders described the target adjustment during an update to reporters on Monday, June 11, about preparations for landing and for operating Curiosity on Mars.

The landing target ellipse had been approximately 12 miles wide and 16 miles long (20 kilometers by 25 kilometers). Continuing analysis of the new landing system's capabilities has allowed mission planners to shrink the area to approximately 4 miles wide and 12 miles long (7 kilometers by 20 kilometers), assuming winds and other atmospheric conditions are as predicted.

Even with the smaller ellipse, Curiosity will be able to touch down at a safe distance from steep slopes at the edge of Mount Sharp.

"We have been preparing for years for a successful landing by Curiosity, and all signs are good," said Dave Lavery, Mars Science Laboratory program executive at NASA. "However, landing on Mars always carries risks, so success is not guaranteed. Once on the ground we'll proceed carefully. We have plenty of time since Curiosity is not as life-limited as the approximate 90-day missions like NASA's Mars Exploration Rovers and the Phoenix lander."

Since the spacecraft was launched in November 2011, engineers have continued testing and improving its landing software. Mars Science Laboratory will use an upgraded version of flight software installed on its computers during the past two weeks. Additional upgrades for Mars surface operations will be sent to the rover about a week after landing.

Other preparations include upgrades to the rover's software and understanding effects of debris coming from the drill the rover will use to collect samples from rocks on Mars. Experiments at JPL indicate that Teflon from the drill could mix with the powdered samples. Testing will continue past landing with copies of the drill. The rover will deliver the samples to onboard instruments that can identify mineral and chemical ingredients.

"The material from the drill could complicate, but will not prevent analysis of carbon content in rocks by one of the rover's 10 instruments. There are workarounds," said John Grotzinger, the mission's project scientist at the California Institute of Technology in Pasadena. "Organic carbon compounds in an environment are one prerequisite for life. We know meteorites deliver non-biological organic carbon to Mars, but not whether it persists near the surface. We will be checking for that and for other chemical and mineral clues about habitability."

Curiosity will be in good company as it nears landing. Two NASA Mars orbiters, along with a European Space Agency orbiter, will be in position to listen to radio transmissions as Mars Science Laboratory descends through Mars' atmosphere.

The mission is managed by JPL for NASA's Science Mission Directorate in Washington. Curiosity was designed, developed and assembled at JPL. Caltech manages JPL for NASA.

www.jpl.nasa.gov

NuSTAR to Drop From Plane and Rocket Into Space

NASA's NuSTAR observatory has communicated with Earth and has oriented its solar panels toward the sun.

-- NASA's NuSTAR observatory is on its own in space after being released from its rocket.

-- The rocket carrying NASA's NuSTAR mission has launched from its carrier plane.

-- The "Stargazer" plane carrying NASA's NuSTAR observatory and its rocket has taken off from Kwajalein Atoll.

-- NuSTAR launch delayed 30 minutes. Launch time is now 9:00 a.m. PDT (noon EDT).

NASA's NuSTAR mission is scheduled to launch from Kwajalein Atoll in the central Pacific Ocean on June 13, no earlier than 8:30 a.m. PDT (11:30 a.m. EDT). The observatory, which will hunt for black holes and other exotic objects using specialized X-ray eyes, will be launched from a Pegasus XL rocket carried by an Orbital Science Corporation L-1011 "Stargazer" plane. The plane will take off from Kwajalein Atoll an hour before launch, flying out over the Pacific Ocean.

About five seconds before launch, the Pegasus XL rocket -- also from Orbital -- will drop from the plane, ignite and propel NuSTAR to space. A video showing a previous Pegasus launch is online at http://www.nasa.gov/multimedia/videogallery/index.html?media_id=128352201 .

Why launch from the air? Plane-assisted launches are less expensive than those that take place from the ground. Less fuel is needed to boost cargo away from the pull of Earth's gravity. NuSTAR is part of NASA's Small Explorer program, which builds focused science missions at relatively low costs.

If all goes as planned, the following milestones will occur on June 13. Times listed are for a launch at the start of a four-hour window.

Takeoff

The Stargazer carrier aircraft, with the Pegasus launch vehicle and NuSTAR spacecraft strapped to its belly, will take off from Kwajalein's Bucholz Auxiliary Airfield an hour before launch, and climb to an altitude of about 39,000 feet (11,900 meters). This should occur around 7:30 a.m. PDT (10:30 a.m. EDT).

The Drop

The carrier aircraft will release the Pegasus rocket at 8:30 a.m. PDT (11:30 a.m. EDT). The rocket will free-fall for about five seconds before igniting.

Ignition

At about 8:30 a.m. PDT (11:30 a.m. EDT), the rocket carrying NuSTAR will ignite. Its first-stage motor will burn for 70 seconds and then drop away. The second-stage motor will burn for about a minute-and-a-half.

Splitting the Nose Cone

While the second stage is burning, pyrotechnic devices will be fired to release the nose cone, or fairing, that encapsulates the observatory. NuSTAR will be exposed to space for the first time. This event is scheduled to occur around 8:33 a.m. PDT (11:33 a.m. EDT).

Separating From the Rocket

At about 8:43 a.m. PDT (11:43 a.m. EDT), 13 minutes after the initial release from the Stargazer, NuSTAR will separate from the Pegasus rocket's third stage. At this point, NuSTAR will be in its final orbit -- a low-Earth equatorial orbit at an altitude of approximately 340 miles (600 kilometers) and an inclination of six degrees.

Phoning Home

When NuSTAR separates from the Pegasus, the satellite's system that controls its orientation in space, or "attitude," will begin to stabilize it, and the spacecraft solar arrays will be deployed. Around this time, its first signal will be received on the ground via NASA's Tracking and Data Relay Satellite System. Over the following week, NuSTAR personnel will perform a series of checkouts to ensure that all spacecraft subsystems are operating nominally.

Deploying the Boom

Roughly one week after launch, engineers will command NuSTAR to deploy its lengthy 33-foot (10-meter) boom, allowing the telescope to focus X-ray light into crisp images. Unlike visible-light telescopes, X-ray telescopes require a long distance between the mirrors and detectors to focus the light. It's a bit like wearing glasses a few feet away from your face.

Science operations are expected to begin about 30 days after launch.

On launch day, live commentary and coverage will be broadcast online beginning at 7 a.m. PDT (10 a.m. EDT) at http://www.nasa.gov/nustar and at http://www.ustream.tv/nasajpl2 .

NuSTAR is a Small Explorer mission led by the California Institute of Technology in Pasadena and managed by NASA's Jet Propulsion Laboratory, also in Pasadena, for NASA's Science Mission Directorate in Washington. The spacecraft was built by Orbital Sciences Corporation, Dulles, Va. Its instrument was built by a consortium including Caltech; JPL; the University of California, Berkeley; Columbia University, New York; NASA's Goddard Space Flight Center, Greenbelt, Md.; the Danish Technical University in Denmark; Lawrence Livermore National Laboratory, Livermore, Calif.; and ATK Aerospace Systems, Goleta, Calif. NuSTAR will be operated by UC Berkeley, with the Italian Space Agency providing its equatorial ground station located at Malindi, Kenya. The mission's outreach program is based at Sonoma State University, Rohnert Park, Calif. NASA's Explorer Program is managed by Goddard. JPL is managed by Caltech for NASA.

Launch management and government oversight for the mission is the responsibility of NASA's Launch Services Program at the Kennedy Space Center in Florida.

www.nasa.gov

NASA's NuSTAR Mission Lifts Off

PASADENA, Calif. – NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) launched into the morning skies over the central Pacific Ocean at 9 a.m. PDT (noon EDT) Wednesday, beginning its mission to unveil secrets of buried black holes and other exotic objects.

"We have been eagerly awaiting the launch of this novel X-ray observatory," said Paul Hertz, NASA's Astrophysics Division Director. "With its unprecedented spatial and spectral resolution to the previously poorly explored hard X-ray region of the electromagnetic spectrum, NuSTAR will open a new window on the universe and will provide complementary data to NASA's larger missions, including Fermi, Chandra, Hubble and Spitzer."

NuSTAR will use a unique set of eyes to see the highest energy X-ray light from the cosmos. The observatory can see through gas and dust to reveal black holes lurking in our Milky Way galaxy, as well as those hidden in the hearts of faraway galaxies.

"NuSTAR will help us find the most elusive and most energetic black holes, to help us understand the structure of the universe," said Fiona Harrison, the mission's principal investigator at the California Institute of Technology in Pasadena.

The observatory began its journey aboard a L-1011 "Stargazer" aircraft, operated by Orbital Sciences Corporation, Dulles, Va. NuSTAR was perched atop Orbital's Pegasus XL rocket, both of which were strapped to the belly of the Stargazer plane. The plane left Kwajalein Atoll in the central Pacific Ocean one hour before launch. At 9:00:35 a.m. PDT (12:00:35 p.m. EDT), the rocket dropped, free-falling for five seconds before firing its first-stage motor.

About 13 minutes after the rocket dropped, NuSTAR separated from the rocket, reaching its final low Earth orbit. The first signal from the spacecraft was received at 9:14 a.m. PDT (12:14 p.m. EDT) via NASA's Tracking and Data Relay Satellite System.

"NuSTAR spread its solar panels to charge the spacecraft battery and then reported back to Earth of its good health," said Yunjin Kim, the mission's project manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "We are checking out the spacecraft now and are excited to tune into the high-energy X-ray sky."

The mission's unique telescope design includes a 33-foot (10-meter) mast, which was folded up in a small canister during launch. In about seven days, engineers will command the mast to extend, enabling the telescope to focus properly. About 23 days later, science operations are scheduled to begin.

In addition to black holes and their powerful jets, NuSTAR will study a host of high-energy objects in our universe, including the remains of exploded stars; compact, dead stars; and clusters of galaxies. The mission's observations, in coordination with other telescopes such as NASA's Chandra X-ray Observatory, which detects lower-energy X-rays, will help solve fundamental cosmic mysteries. NuSTAR also will study our sun's fiery atmosphere, looking for clues as to how it is heated.

NuSTAR is a Small Explorer mission led by the Caltech and managed by JPL for NASA's Science Mission Directorate in Washington. The spacecraft was built by Orbital Sciences Corporation. Its instrument was built by a consortium including Caltech; JPL; the University of California, Berkeley; Columbia University, New York; NASA's Goddard Space Flight Center, Greenbelt, Md.; the Danish Technical University in Denmark; Lawrence Livermore National Laboratory, Livermore, Calif.; and ATK Aerospace Systems, Goleta, Calif. NuSTAR will be operated by UC Berkeley, with the Italian Space Agency providing its equatorial ground station located at Malindi, Kenya. The mission's outreach program is based at Sonoma State University, Rohnert Park, Calif. NASA's Explorer Program is managed by Goddard. JPL is managed by Caltech for NASA.

Launch management and government oversight for the mission are the responsibility of NASA's Launch Services Program at the Kennedy Space Center in Florida. NASA’s Space Network and Near Earth Network are providing space communication services for launch and early orbit and critical periods during the mission. 

www.nasa.gov

Compact Blue Dwarf Can’t Hide from Hubble

The NASA/ESA Hubble Space Telescope has captured this view of the dwarf galaxy UGC 5497, which looks a bit like salt sprinkled on black velvet in this image.

The object is a compact blue dwarf galaxy that is infused with newly formed clusters of stars. The bright, blue stars that arise in these clusters help to give the galaxy an overall bluish appearance that lasts for several million years until these fast-burning stars explode as supernovae.

UGC 5497 is considered part of the M 81 group of galaxies, which is located about 12 million light-years away in the constellation Ursa Major (The Great Bear). UGC 5497 turned up in a ground-based telescope survey back in 2008 looking for new dwarf galaxy candidates associated with Messier 81.

According to the leading cosmological theory of galaxy formation, called Lambda Cold Dark Matter, there should be far more satellite dwarf galaxies associated with big galaxies like the Milky Way and Messier 81 than are currently known. Finding previously overlooked objects such as this one has helped cut into the expected tally — but only by a small amount.

Astrophysicists therefore remain puzzled over the so-called "missing satellite" problem.

The field of view in this image, which is a combination of visible and infrared exposures from Hubble’s Advanced Camera for Surveys, is approximately 3.4 by 3.4 arcminutes.

/www.nasa.gov

Most Quasars Live on Snacks, Not Large Meals

Black holes in the early universe needed a few snacks rather than one giant meal to fuel their quasars and help them grow, a new study shows.

Quasars are the brilliant beacons of light that are powered by black holes feasting on captured material, and in the process, heating some of the matter to millions of degrees. The brightest quasars reside in galaxies distorted by collisions with other galaxies. These encounters send lots of gas and dust into the gravitational whirlpool of hungry black holes.

Now, however, astronomers are uncovering an underlying population of fainter quasars that thrive in normal-looking spiral galaxies. They are triggered by black holes snacking on such tasty treats as a batch of gas or the occasional small satellite galaxy.

A census of 30 quasar host galaxies conducted with two of NASA's premier observatories, the Hubble Space Telescope and Spitzer Space Telescope, has found that 26 of the host galaxies bear no tell-tale signs of collisions with neighbors, such as distorted shapes. Only one galaxy in the sample shows evidence of an interaction with another galaxy. The galaxies existed roughly 8 billion to 12 billion years ago, during a peak epoch of black-hole growth.

The study, led by Kevin Schawinski of Yale University, bolsters evidence that most massive black-hole growth in the early universe was fueled by small, long-term events rather than dramatic short-term major mergers.

"Quasars that are products of galaxy collisions are very bright," Schawinski said. "The objects we looked at in this study are the more typical quasars. They're a lot less luminous. The brilliant quasars born of galaxy mergers get all the attention because they are so bright and their host galaxies are so messed up. But the typical bread-and-butter quasars are actually where most of the black-hole growth is happening. They are the norm, and they don't need the drama of a collision to shine."

Schawinski's science paper has been accepted for publication in a letter to the Monthly Notices of the Royal Astronomical Society.

For his analysis, Schawinski analyzed galaxies observed by the Spitzer and Hubble telescopes in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). He chose 30 dust-shrouded galaxies that appeared extremely bright in infrared images taken by the Spitzer telescope, a sign that their resident black holes are feasting on infalling material. The dust is blocking the quasar's light at visible wavelengths. But infrared light pierces the dust, allowing Schawinski to study the galaxies' detailed structure. The masses of those galaxies are comparable to our Milky Way's.

Schawinski then studied the galaxies in near-infrared images taken by Hubble's Wide Field Camera 3. Hubble’s sharp images allowed careful analysis of galaxy shapes, which would be significantly distorted if major galaxy mergers had taken place and were disrupting the structure. Instead, in all but one instance, the galaxies show no such disruption.

Whatever process is stoking the quasars, it's below the detection capability of even Hubble. "I think it's a combination of processes, such as random stirring of gas, supernovae blasts, swallowing of small bodies, and streams of gas and stars feeding material into the nucleus," Schawinski said.

A black hole doesn't need much gas to satisfy its hunger and turn on a quasar. "There's more than enough gas within a few light-years from the center of our Milky Way to turn it into a quasar," Schawinski explained. "It just doesn't happen. But it could happen if one of those small clouds of gas ran into the black hole. Random motions and stirrings inside the galaxy would channel gas into the black hole. Ten billion years ago, those random motions were more common and there was more gas to go around. Small galaxies also were more abundant and were swallowed up by larger galaxies."

The galaxies in Schawinski's study are prime targets for the James Webb Space Telescope, a large infrared observatory scheduled to launch later this decade. "To get to the heart of what kinds of events are powering the quasars in these galaxies, we need the Webb telescope. Hubble and Spitzer have been the trailblazers for finding them."
 
/www.nasa.gov

NuSTAR Mission Status Report

Observatory Unfurls its Unique Mast

PASADENA, Calif. -- NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, has successfully deployed its lengthy mast, giving it the ability to see the highest energy X-rays in our universe. The mission is one step closer to beginning its hunt for black holes hiding in our Milky Way and other galaxies.

"It's a real pleasure to know that the mast, an accomplished feat of engineering, is now in its final position," said Yunjin Kim, the NuSTAR project manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. Kim was also the project manager for the Shuttle Radar Topography Mission, which flew a similar mast on the Space Shuttle Endeavour in 2000 and made topographic maps of Earth.

NuSTAR's mast is one of several innovations allowing the telescope to take crisp images of high-energy X-rays for the first time. It separates the telescope mirrors from the detectors, providing the distance needed to focus the X-rays. Built by ATK Aerospace Systems in Goleta, Calif., this is the first deployable mast ever used on a space telescope.

On June 21 at 10:43 a.m. PDT (1:43 p.m. EDT), nine days after launch, engineers at NuSTAR's mission control at UC Berkeley in California sent a signal to the spacecraft to start extending the 33-foot (10-meter) mast, a stable, rigid structure consisting of 56 cube-shaped units. Driven by a motor, the mast steadily inched out of a canister as each cube was assembled one by one. The process took about 26 minutes. Engineers and astronomers cheered seconds after they received word from the spacecraft that the mast was fully deployed and secure.

The NuSTAR team will now begin to verify the pointing and motion capabilities of the satellite, and fine-tune the alignment of the mast. In about five days, the team will instruct NuSTAR to take its "first light" pictures, which are used to calibrate the telescope.

On June 21 at 10:43 a.m. PDT (1:43 p.m. EDT), nine days after launch, engineers at NuSTAR's mission control at UC Berkeley in California sent a signal to the spacecraft to start extending the 33-foot (10-meter) mast, a stable, rigid structure consisting of 56 cube-shaped units. Driven by a motor, the mast steadily inched out of a canister as each cube was assembled one by one. The process took about 26 minutes. Engineers and astronomers cheered seconds after they received word from the spacecraft that the mast was fully deployed and secure.

The NuSTAR team will now begin to verify the pointing and motion capabilities of the satellite, and fine-tune the alignment of the mast. In about five days, the team will instruct NuSTAR to take its "first light" pictures, which are used to calibrate the telescope.

Why did NuSTAR need such a long, arm-like structure? The answer has to do with the fact that X-rays behave differently than the visible light we see with our eyes. Sunlight easily reflects off surfaces, giving us the ability to see the world around us in color. X-rays, on the other hand, are not readily reflected: they either travel right through surfaces, as is the case with skin during medical X-rays, or they tend to be absorbed, by substances like your bone, for example. To focus X-rays onto the detectors at the back of a telescope, the light must hit mirrors at nearly parallel angles; if they were to hit head-on, they would be absorbed instead of reflected.

On NuSTAR, this is accomplished with two barrels of nested mirrors, each containing 133 shells, which reflect the X-rays to the back of the telescope. Because the reflecting angle is so shallow, the distance between the mirrors and the detectors is long. This is called the focal length, and it is maintained by NuSTAR's mast.

The fully extended mast is too large to launch in the lower-cost rockets required for relatively inexpensive Small Explorer class missions like NuSTAR. Instead NuSTAR launched on its Orbital Science Corporation's Pegasus rocket tucked inside a small canister. This rocket isn't as expensive as its bigger cousins because it launches from the air, with the help of a carrier plane, the L-1011 "Stargazer," also from Orbital.

NuSTAR is a Small Explorer mission led by the California Institute of Technology in Pasadena and managed by JPL for NASA's Science Mission Directorate in Washington. The spacecraft was built by Orbital Sciences Corporation, Dulles, Va. Its instrument was built by a consortium including Caltech; JPL; the University of California, Berkeley; Columbia University, New York; NASA's Goddard Space Flight Center, Greenbelt, Md.; the Danish Technical University in Denmark; Lawrence Livermore National Laboratory, Livermore, Calif.; and ATK Aerospace Systems, Goleta, Calif. NuSTAR will be operated by UC Berkeley, with the Italian Space Agency providing its equatorial ground station located at Malindi, Kenya. The mission's outreach program is based at Sonoma State University, Rohnert Park, Calif. NASA's Explorer Program is managed by Goddard. JPL is managed by Caltech for NASA.

www.nasa.gov

Hubble Discovers Waterworld Planet

GJ1214b, shown in this artist's view, is a super-Earth orbiting a red dwarf star 40 light-years from Earth. New observations from NASA's Hubble Space Telescope show that it is a waterworld enshrouded by a thick, steamy atmosphere. GJ1214b represents a new type of planet, like nothing seen in our solar system or any other planetary system currently known.

he Many Moods of Titan


A set of recent papers, many of which draw on data from NASA's Cassini spacecraft, reveal new details in the emerging picture of how Saturn's moon Titan shifts with the seasons and even throughout the day. The papers, published in the journal Planetary and Space Science in a special issue titled "Titan through Time", show how this largest moon of Saturn is a cousin – though a very peculiar cousin – of Earth.

"As a whole, these papers give us some new pieces in the jigsaw puzzle that is Titan," said Conor Nixon, a Cassini team scientist at the NASA Goddard Space Flight Center, Greenbelt, Md., who co-edited the special issue with Ralph Lorenz, a Cassini team scientist based at the Johns Hopkins University Applied Physics Laboratory, Laurel, Md. "They show us in detail how Titan's atmosphere and surface behave like Earth's – with clouds, rainfall, river valleys and lakes. They show us that the seasons change, too, on Titan, although in unexpected ways."

A paper led by Stephane Le Mouelic, a Cassini team associate at the French National Center for Scientific Research (CNRS) at the University of Nantes, highlights the kind of seasonal changes that occur at Titan with a set of the best looks yet at the vast north polar cloud.

A newly published selection of images – made from data collected by Cassini's visual and infrared mapping spectrometer over five years – shows how the cloud thinned out and retreated as winter turned to spring in the northern hemisphere.

Cassini first detected the cloud, which scientists think is composed of ethane, shortly after its arrival in the Saturn system in 2004. The first really good opportunity for the spectrometer to observe the half-lit north pole occurred on December 2006. At that time, the cloud appeared to cover the north pole completely down to about 55 degrees north latitude. But in the 2009 images, the cloud cover had so many gaps it unveiled to Cassini's view the hydrocarbon sea known as Kraken Mare and surrounding lakes.

"Snapshot by snapshot, these images give Cassini scientists concrete evidence that Titan's atmosphere changes with the seasons," said Le Mouelic. "We can't wait to see more of the surface, in particular in the northern land of lakes and seas."

In data gathered by Cassini's composite infrared mapping spectrometer to analyze temperatures on Titan's surface, not only did scientists see seasonal change on Titan, but they also saw day-to-night surface temperature changes for the first time. The paper, led by Valeria Cottini, a Cassini associate based at Goddard, used data collected at a wavelength that penetrated through Titan's thick haze to see the moon's surface. Like Earth, the surface temperature of Titan, which is usually in the chilly mid-90 kelvins (around minus 288 degrees Fahrenheit), was significantly warmer in the late afternoon than around dawn.

"While the temperature difference – 1.5 kelvins – is smaller than what we're used to on Earth, the finding still shows that Titan's surface behaves in ways familiar to us earthlings," Cottini said. "We now see how the long Titan day (about 16 Earth days) reveals itself through the clouds."

A third paper by Dominic Fortes, an outside researcher based at University College London, England, addresses the long-standing mystery of the structure of Titan's interior and its relationship to the strikingly Earth-like range of geologic features seen on the surface. Fortes constructed an array of models of Titan's interior and compared these with newly acquired data from Cassini's radio science experiment.

The work shows the moon's interior is partly or possibly even fully differentiated. This means that the core is denser than outer parts of the moon, although less dense than expected. This may be because the core still contains a large amount of ice or because the rocks have reacted with water to form low-density minerals.

Earth and other terrestrial planets are fully differentiated and have a dense iron core. Fortes' model, however, rules out a metallic core inside Titan and agrees with Cassini magnetometer data that suggests a relatively cool and wet rocky interior. The new model also highlights the difficulty in explaining the presence of important gases in Titan's atmosphere, such as methane and argon-40, since they do not appear to be able to escape from the core.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory manages the mission for NASA's Science Mission Directorate, Washington, D.C. The visual and infrared mapping spectrometer team is based at the University of Arizona, Tucson. The composite infrared spectrometer team is based at NASA's Goddard Space Flight Center in Greenbelt, Md., where the instrument was built. The radio science subsystem has been jointly developed by NASA and the Italian Space Agency.